Green Bone: Minocycline-Induced Discoloration of Bone Rarely Reported in Foot and Ankle

Molly S. Judge, DPM, FACFAS 1, J. Michael Miller, DPM, FACFAS 2, Michael Lyons III, DPM 3

1Director, Research and Publications, Mercy Foot & Ankle Residency Program, Cleveland, OH
2Director of Fellowship Training, Department of Surgery, American Health Network, Indianapolis, IN
3PGY-IV, Fellow, Department of Surgery, American Health Network, Indianapolis, IN

ARTICLE INFO

Level of Clinical Evidence: 4
Keywords:
ankle fracture
bunion
green bone
lower extremity
tetracyclines

ABSTRACT

The tetracycline antibiotics incorporate into bone similar to bisphosphonates. Tetracycline stains bone a fluorescent yellow and minocycline, more commonly used for chronic acne, stains bone dark green. Owing to its frequent use, the occurrence of green bone discoloration due to antibiotics in the tetracycline class is well understood. Its pigmentation can be seen through delicate, thin tissue as a dark blue-gray. Histologic inspection of this bone will confirm a benign condition without evidence of bone disease. Although yellow and green discoloration has been documented frequently in association with oral surgery, it has been reported less commonly in the lower extremity. Green discoloration of bone has rarely been reported in the foot and ankle. Unlike other forms of hyperpigmentation of the skin and bone, this entity is benign when resulting from tetracycline therapy. It is always prudent to have a clinical correlate for an unusual discoloration or hyperpigmentation of any tissue when it exists. In the absence of a definitive clinical correlation, a biopsy is warranted. The following case studies provide a pictoral of green bone as it was encountered in the foot and ankle of 2 young adult females undergoing surgery.

© 2018 by the American College of Foot and Ankle Surgeons. All rights reserved.

Tetracycline incorporation into bone has been described in multiple areas of the skeletal system. Including the 2 present cases, >30 case of tetracycline incorporation into bones have been reported. Most of these (23 cases) have been in the mandible or alveolar bone of the maxilla (1). One case was noted in the clavicle (2). Another report described black discoloration in the vertebrae in a patient with a 6-year history of minocycline use (3). Tetracycline incorporation has also been noted in the femur during total knee arthroplasty (1). The most recent report was of discoloration of the acromion and, after biopsy, in the iliac crest (4). Before the present report, only rare cases of bony discoloration below the knee have been reported. Whether the rarity of tetracycline-induced bone discoloration in the foot and ankle has resulted from its infrequent occurrence or underreporting is a matter of speculation. We believe discussion of the present 2 cases of green bone secondary to exposure to tetracycline drugs is important for specialists in lower extremity surgery and medicine, because it can be mistaken for other more morbid diagnoses associated with hyperpigmentation of tissue.

Tetracyclines were introduced to the medical community in 1947, and minocycline, a semisynthetic tetracycline, was introduced 20 years later (5–7). Tetracyclines have antimicrobial action by binding to the 30s subunit of bacterial ribosomes and inhibiting protein synthesis (8,9). They have antimicrobial effects against gram-positive and gram-negative bacilli, methicillin-resistant Staphylococcus aureus, Enterobacteriaceae, spirochetes, actinomyces, chlamydia, and rickettsia (5,7–9). Minocycline, in particular, was found to have greater antimicrobial activity than other tetracyclines and achieves a peak serum concentration in only a few hours (6,10). In addition to antimicrobial activity, minocycline is also known to have an antiinflammatory action, which has been demonstrated by its antichemotactic and anticolagenase activity (11–14). This antiinflammatory property has led to its long-term use for rheumatoid arthritis, rosacea, and acne (112,15,16). Minocycline is commonly used in treating chronic acne because it is the most lipid soluble of the tetracycline class of antibiotics. In both of the present cases, the common denominator was the long-term use of minocycline.

The side effects of minocycline have been described in detail. Hyperpigmentation is the most common side effect and has been described in many areas, including the skin, oral mucosa, tongue, teeth, nails, and bones (2,6,12,17–20). Skin hyperpigmentation has

Financial Disclosure: None reported.
Conflicts of Interest: None reported.
Address correspondence to: Molly S. Judge, DPM, FACFAS, Department of Surgery, Mercy Foot & Ankle Residency Program Cleveland, 140 Brookside Drive, Oak Harbor, OH 43449.
E-mail address: mjudgemolly@aol.com (M.S. Judge).

1067-2516/$ - see front matter © 2018 by the American College of Foot and Ankle Surgeons. All rights reserved.
https://doi.org/10.1053/j.jfas.2017.11.009
been attributed to iron deposits in dermal macrophages, typically formed by minocycline degradation or iron-chelated minocycline (1,12,18). Other side effects of tetracycline/minocycline use include gastrointestinal irritation, nausea, vomiting, vestibular toxicity, and hepatotoxicity (7).

The first description of tetracyclines incorporating into bone was in 1957 (21). Deposition of minocycline into bones has been described secondary to chelation of minocycline with both calcium and magnesium, and it has been noted that skeletal incorporation occurs rapidly after parenteral administration (21,22). Dahners and Bos (23) proved that incorporation only occurs in live bone. They administered 100 mg of doxycycline by mouth twice daily to a patient with known chronic osteomyelitis. Months later, with bone debridement, all live bone fluoresced secondary to doxycycline incorporation, and any necrotic bone was easily identified by the nonfluorescence and debrided (23). A study by Oklund et al (5) revealed affected adult bone to be structurally sound. In the present cases, no deleterious effects were found on bone healing. Although all these cases have been in fully developed bone, problems have occurred with tetracyclines in growing bone. Studies have shown that tetracyclines cause a reversible decrease in fibular growth in premature children (24). Animal studies have shown a decrease in bone maturation in developing monkeys and inhibition of mineralization and development in chick embryos, although no deleterious effects were found in adult rats, dogs, or monkeys (25–27).

Identification of tetracyclines in bone is by high-intensity ultraviolet illumination. The first description of tetracycline fluorescence in bone was in 1958 by Milich et al (28), and the wavelength originally described was 365 nm (29). However, when affected bone has been decalcified, it will not fluoresce at any wavelength, giving more support to the incorporation being secondary to chelation with calcium (7,30). Spectrophotometry has also been used for the identification, and the peak wavelength recommended is 380 nm (7). Using a fluorescence microscope with a dark field filter, tetracycline-labeled human bone from ancient Sudanese Nubia (A.D. 350) fossils has been documented (31). This is a testament that this chemical reaction has been occurring in bone since ancient times.

Although the concept of the tetracycline drugs, specifically minocycline, causing discoloration of bone is not new, reports of such changes within the foot and ankle are rare (19,32). Hyperpigmentation of tissue secondary to minocycline can be divided into 3 clinical categories based on the pathophysiology (19): type I, dark blue-black macules in regions of depressed acne scar that are sharply demarcated; type II, circumscribed hyperpigmented macules or a more diffuse hyperpigmentation remote from the infection or inflammation and most commonly reported in the lower leg and sun-exposed regions of the skin; and type III, referred to as "muddy skin syndrome," which appears as a dark brown, gray or off-color tan, is found generalized over the body but appears lighter in non–sun-exposed areas. The pigmentation when seen on the face looks like poorly applied cosmetics or otherwise factitial. None of these 3 types of hyperpigmentation will be perceptible on plain radiographs. We present 2 such cases in which the use of minocycline was associated with discoloration of bone in the fibula and the first metatarsal bone.

Case Report

Patient 1

In May 2007 a 19-year-old female presented to the senior author's office (M.S.J.) 11 months after open reduction and internal fixation for an ankle fracture dislocation. That procedure had been uncomplicated, and she had recovered promptly, returning to all her usual daily and athletic activities as desired. The chief complaint was of a black-brown discoloration that had broken out over the region of her lateral ankle (Fig. 1). The pigmentation seemed to be darkest in the region of the fracture; however, it extended the entire length of the retained hardware. The black-brown coloration became more diffuse the further it was from the site of the hardware. The margins of the pigmentation were indistinct and spared the region of the cicatrix. Her skin had a normal texture and turgor otherwise, and no elevated regions, deep dermal defects, or nodular eruptions were present in the area. No evidence of skin adhesions was found, and the cicatrix was supple, without thickening or pigmentation. The ankle motion was smooth and noncrepitant, and she had no evidence of joint pain. She had a full range ankle motion that had a spongy end feel with and without knee flexion. Her muscle strength was graded as 5 of 5 for all groups about the leg and ankle, and her neurovascular status appeared within normal limits.

Additionally, progressive morning stiffness in the ankle had evolved over the previous few months. This correlated with the timing of the skin discoloration. She denied pain, and, despite wearing prescription orthotics regularly, the ankle stiffness had developed insidiously many months after her recovery from surgery. The stiffness had begun to interfere with her usual daily activities during the most recent weeks and had failed to respond to ibuprofen 800 mg 3 times daily. She denied any recent injury or changes in activity that could have been related to the skin condition or ankle stiffness. She had not traveled out of the country and had no other allergic reactions or incidence of infection since her surgery 11 months previously. When asked about metal allergies, she recalled that during her adolescence she had worn a copper ring for ~2 years that had left a dark brown ring around her finger once it was removed. The suspicion for a metal allergy causing a skin reaction and associated ankle stiffness was highest on the differential diagnosis list; however, the consideration for hyperpigmentation due to melanoma could not be excluded. She was otherwise healthy, and her medication history included only minocycline for chronic acne. Plain radiographs failed to reveal evidence of degenerative change, periostitis, osseous insufficiency, or fracture. Migration of the most proximal screw was noted compared with the views immediately after open reduction and internal fixation. However, it was not palpable on clinical examination (Fig. 2).
The patient requested removal of the internal fixation. She had a number of social issues that factored into her decision. She would only be covered under her family’s medical insurance for the next few months. Furthermore, she would be moving to Mexico, where she would not have health insurance. The differential diagnosis included metal allergy; skin reaction; hyperpigmented cicatrix formation; underlying fibrous dysplasia; and melanotic dysplasia. Each condition is associated with hyperpigmentation of the skin resultant from differing mechanisms.

The intraoperative photographs (Fig. 3) illustrate the green discoloration of bone affecting the distal fibula through its entirety. Discoloration can be seen throughout the depth of the screw holes and for the entire circumference of the bone along the full length of the plate (Fig. 3). In contrast, in the intraoperative photographs (Fig. 4) from the index procedure 1 year previously, no discoloration is visible. Within 3 weeks after hardware removal, the patient believed that the skin discoloration had begun to fade and the bulk of her ankle stiffness had been relieved. Although the patient believed the pigmentation was fading, a comparison with the preoperative clinical photographs failed to reveal any meaningful evidence of change. Thus, the patient will continue to be followed up over time to ensure that no darkening or proximal extension of the pigmentation occurs, because these could be indicators of a different entity. She was able to return to her usual daily and athletic activities immediately after the sutures were removed at 3 weeks postoperatively. The 3-month follow-up photographs taken just 2 weeks before she relocated are shown in Fig. 5. The patient was able to perform toe rises and deep squats, maximally dorsiflexing her ankle, without pain, crepitation, or limitation of motion. She was able to dance and resume hiking without discomfort. She denied ankle dysfunction and specifically denied pain, stiffness, or swelling about the ankle. She expressed complete satisfaction with the outcome of her surgery and, in retrospect, would undergo the procedure again. At the last follow-up contact, 2 years, 5 months after hardware removal, the patient confirmed that the pigmentation was fading and that no evidence of progression of this condition was
Fig. 4. Intraoperative photographs positioned in the (A) lateral oblique view and (B) lateral view. Compare Fig. 3A with these initial intraoperative photographs taken during the index procedure of open reduction and internal fixation. The fibers of the transverse crural ligament remained intact and were of normal coloration. No evidence of skin or bone pigmentation can be seen, and the soft tissues and osseous structures were healthy appearing throughout. The fracture could be readily reduced into the anatomic position and showed healthy bleeding potential with solid cortical margins.

present. Specifically, she denied evidence of darkening, ulceration, deep dermal defect, drainage, or proximal extension of the pigmentation about the lateral ankle.

Patient 2

A 20-year-old female college student presented to the office of 1 of us (J.M.M.) with a complaint of a painful bunion of her left foot of many years' duration. She stated the deformity had been present since childhood but had become painful during the previous 12 months. Treatment had included accommodative shoe gear, padding, and non-steroidal antiinflammatory medications, with minimal improvement. Her medical history was positive for chronic acne and was being treated with both minocycline and spironolactone. She denied drug allergies or tobacco use.

Physical examination revealed the patient was 5’8” and weighed 140 lb. The physical examination findings were normal, except for the left first metatarsophalangeal joint. The patient had a hallux valgus deformity with an abnormal interphalangeus. The hallux overlapped the second digit. Pain was present on palpation of the first metatarsal head, where a large medial eminence was palpated. The muscle strength at the first metatarsophalangeal joint was 5 of 5, and the range of motion was unrestricted with mild pain at the end range of dorsiflexion.

The radiographic evaluation (Fig. 6) revealed an intermetatarsal angle 1-2 of 15°. The hallux abductus angle was 20°, and the interphalangeus angle was 16°. Soft tissue overlap of the first and second digits was readily apparent. Painful hallux valgus and hallux interphalangeus were diagnosed. Given the failure of previous conservative therapy, surgical intervention was recommended.

We performed a McRide procedure with chevron osteotomy of the first metatarsal and Akin osteotomy of the proximal phalanx. Intraoperative examination revealed a deep green-blue discoloration of the first metatarsal head (Fig. 7). The procedure was performed without complications, and the resected medial eminence was sent for histologic examination. There was no gross evidence of osseous insufficiency or necrotic change to bone. The histological exam was negative for any osseous abnormality. The patient recovered promptly from the osteotomies without complication. She returned to full
weight bearing activities and is completely satisfied with the outcome of her procedures. Her follow up plain radiographs were consistent with her prompt return to function and complete subjective satisfaction at 12 weeks after surgery (Fig. 8).

Discussion

Discoloration of skin and bone should be investigated when it presents without a reasonable clinical correlate. The discoloration noted in the present cases was vastly different from that seen when metal oxidizes, a more common finding in foot and ankle surgery. In patient 1, the metallic implants removed were in pristine condition; however, the bone was discolored through and through. In patient 2, the discoloration was found in otherwise healthy normal bone prepared for correction of a bunion deformity. For patients who have received chronic treatment with the tetracycline class of antibiotics, discoloration, or even fluorescence, of bone can predictably be seen. In the case of metal allergy, exposure to these materials can predictably be associated with discoloration of bone and/or the overlying skin. When no obvious clinical correlate to this discoloration is present, further investigation, including biopsy, is warranted.

The yellow, green, or blue-green discoloration due to the fluorescence of chelating agents is a benign process. Given the coincident hyperpigmentation of the associated dermis in patient 1, this entity becomes even more important. In the absence of other obvious clinical correlates, this should be distinguished from other diseases associated with hyperpigmentation of skin or bone such as melanoma or infection. Given that this condition has been rarely reported in the foot and ankle, we believe the topic to be not only interesting but also important.

Although tetracycline-induced discoloration of bone is understood and discussed within the current data, numerous physicians remain who have not witnessed this phenomenon. Since the time of this writing, the senior author (M.S.J.) has presented the case of patient 1 as a clinical quandary to numerous large group forums across the United States, requesting audience participation. These forums included audiences of physicians, surgeons, and residents of medicine,
hyperpigmentation of skin and bone has been thoroughly documented in this pictorial of 2 cases of minocycline-induced discoloration of bone in the first metatarsal and the fibula. We emphasized that when this is encountered, it should be differentiated from other conditions that can cause hyperpigmentation of skin and bone such as melanoma and infection. In the absence of obvious benign clinical correlates such as chronic exposure to tetracyclines, abnormal hyperpigmentation of any tissue warrants further investigation, including biopsy.

Acknowledgments

Special thanks to the medical library staff of Mercy St. Vincent Medical Center, Toledo, Ohio, for their exemplary efforts in searching and procuring articles for this project.

References


